Showing posts with label cognition. Show all posts
Showing posts with label cognition. Show all posts

Saturday, 16 November 2013

Unusual Animal Intelligence - [Magazine article]




(Iflscience.com, 22, October 2013) - Before 1960 most of the work surrounding animal intelligence was centred around behaviour, with famous experiments such as Pavlov’s dogs and Thorndike’s operant conditioning. After 1960, the field began to shift to understand animal cognition and there has been much debate whether animals have an actual consciousness. 

The full extent of what animals think may never be known, but we already have seen amazing intelligence from some unlikely sources.

Crows

Crows are insanely intelligent creatures. They are able to recognize human faces and hold a grudge against the ones they don’t like. In order to study the crows they had to be collected and properly tagged. The scientists who handled the birds quickly fell out of favor with the crows. The next time the researchers entered the enclosure they were greeted by the crows dive bombing and attacking them. If the same researchers came back wearing a mask that the crows hadn’t seen before, they were left alone. It also appears that the crows conspire with one another and share information about which humans they don’t like. Crows who were absent when a particular researcher had handled the other birds would still respond with hostility upon seeing the scientist at a later date.

Their amazing intelligence is not always used to start fights -  they are skilled at using tools in order to retrieve food or solve problems. Crows readily use sticks, rocks, and wires to retrieve food from hidden places. If the proper tool is not at their disposal, they can actually make one to suit the job. What's more, these crows can use tools better than many primates.

Aesop’s “The Crow and the Pitcher” fable describes crows’ ingenuity. A crow wanted a drink of water, but was unable to reach down into the pitcher. Rather than give up, it dropped pebble after pebble into the pitcher until the water rose high enough for it to have a drink. It is a 2600-year-old story of tenacity. Modern scientists have decided to test the fable and found that it was scientifically accurate. 

Dolphins

“So long, and thanks for all the fish.”

Dolphins have long been celebrated as some of the most clever animals in the world. Their brains are extremely large for their body size, have a neocortex (where higher function takes place) much more intricate than humans and the region of the brain that is in charge of self awareness is enlarged when compared to other animals. 

Dolphins live in social societies and communication is integral to its success. They do not have vocal cords as humans do, but use a combination of clicks, squeaks, creaks, and buzzes to talk to their fellow cetaceans, though scientists have not been able to discern an actual language yet. Body language is also an important communication tool Dolphin whistles are unique to individuals and are developed in the first month of life.

It was recently discovered that dolphins remember the signature call of their friends, even if they hadn’t seen each other in over 20 years. This might help explain how dolphins can leave and join different pods so easily over the course of their lifetime.

Dolphins are so intelligent that India has recently put a ban on their captivity. India’s Ministry of the Environment and Forests has labeled cetaceans as "non-human persons" and released a statement saying they are not to be captured for entertainment purposes by any person or institution, whether they are public or private.

Pigs

While it might be surprising to some pigs are quite intelligent and many would compare that intellect to be on the same level as dolphins and higher apes. 

Part of this intellect might be because large chunks of pig genome are virtually identical to humans, though our last common ancestor died out 100 million years ago. Pigs love to become couch potatoes and would rather eat, drink, smoke, and watch TV than be active; not unlike many people.

When introduced to a mirror, they were initially fascinated by the pig in the reflection and tried to interact by nudging and vocalizing. While they could see food in the mirror, they tried looking behind the mirror only to end up hungry. The next time the mirror was presented, they were not interested in their own image, but instead used the reflection to find the bowl of food behind them in under 30 seconds. 

Pigs can also be trained to learn tricks fairly easily. However, if at first they don’t succeed, getting the courage to try again is a long process, especially if the pig got hurt in the attempt. Researchers speculate that the memory of the failure is a big hurdle to overcome for many pigs. Failures in training and living conditions can affect a pig's mood, as the animals are capable of having and expressing complex emotions.

Elephants

Elephants are the largest mammals on land, and it turns out that they have the brains to back up the brawn. 

It was recently discovered that with absolutely no training elephants understand when humans point. While standing in between two identical buckets, but one was filled with food, the elephants immediately chose the one that the human had gestured. While it is remarkable that elephants are able to spontaneously understand this body language, it becomes even more impressive since many great apes are not capable of the same level of understanding.

Captive elephants had no greater advantage than wild elephants with little human interaction, leading the scientists to believe that this is an innate response, and pointing on some level may exist in elephant populations.

In a different study highlighting the intelligence of these pachyderms a group of elephants competed against a group of humans in a teamwork exercise. Not only did the elephants beat the humans in the exercise, but they were able to do it using techniques that the researchers had not previously considered.
 

Monday, 14 January 2013

Are Crows Mind Readers ... Or Just Stressed Out? - [Article]

"Soon... my Lego castle will be complete!
Your people intelligence is no match for my bird intelligence"

(ScienceNOW, 10, Jan 2013) - Are crows mind readers? Recent studies have suggested that the birds hide food because they think others will steal it — a complex intuition that has been seen in only a select few creatures. Some critics have suggested that the birds might simply be stressed out, but new research reveals that crows may be gifted after all.


Cracks first began forming in the crow mind-reading hypothesis last year. One member of a research team from the University of Groningen in the Netherlands spent 7 months in bird cognition expert Nicola Clayton’s University of Cambridge lab in the United Kingdom studying Western scrub jays, a member of the crow family that is often used for these studies. The Groningen team then developed a computer model in which “virtual jays” cached food under various conditions.

In PLOS ONE, they argued that the model showed the jays’ might be moving their food—or recaching it—not because they were reading the minds of their competitors, but simply because of the stress of having another bird present (especially a more dominant one) and of losing food to thieves. The result contradicted previous work by Clayton’s group suggesting that crows might have a humanlike awareness of other creatures’ mental states—a cognitive ability known as theory of mind that has been claimed in dogs, chimps, and even rats.

In the new study, Clayton and her Cambridge graduate student James Thom decided to test the stress hypothesis. First, they replicated earlier work on scrub jays by letting the birds hide peanuts in trays of ground corn cobs—either unobserved or with another bird watching—and later giving them a chance to rebury them. As in previous studies, the jays recached a much higher proportion of the peanuts if another bird could see them: nearly twice as much as in private, the team reports online today in PLOS ONE.

Then came the stress test. First, Thom and Clayton gave the jays trays with the ground cobs but no food to hide in them—a so-called “sham” session. Then, in a second session, they gave the birds new hiding trays and bowls of peanuts to hide. When the jays were done, the experimenters removed the trays and stole all of the peanuts. Finally, after a short break, the researchers gave each bird yet another round of food, a new tray to hide it in, and one of the trays it had seen earlier: either the sham tray or the ransacked “pilfer” tray. The jays had 10 minutes for recaching.

If the Groningen model was correct, Thom and Clayton argue, the stress of discovering that food was missing from the pilfer tray ought to drive jays to cache more peanuts than those presented with the sham tray. In fact, there was no difference, even though corvids have excellent memories for hidden food and remarkable abilities to find it again. The hypothesis that jays have theory of mind remains on the table, Thom says.

Thom and Clayton have “definitely shown that scrub recaching is not as simple as the [Groningen] model presents it,” says Elske van der Vaart, lead author of the Groningen team’s earlier report, who is now at the University of Amsterdam. But she argues that there is still room for doubt about what the results mean. For example, the sham condition—in which the jays had no food to cache—could have stressed the birds as much as the stolen peanuts in the pilfer condition did.

Amanda Seed, an animal cognition researcher at the University of St. Andrews in the United Kingdom, says the Groningen model’s failure to predict the birds’ caching behavior in the new experiments could “bring the model down like a pack of cards.” But researchers still have to rule out other possible explanations, she says. For example, the birds given pilfered tray may have noticed the missing peanuts too late to affect their overall caching rate, or they may have spent much of their time looking for the missing nuts instead of hiding the new ones. The Cambridge and Groningen groups are planning more work with both real and “virtual” birds to see what is really going on. “I applaud them for rising to the challenge,” Seed says.

Thursday, 4 October 2012

Human brains grow bigger in the womb than chimpanzee's


(New Scientist.com, 25, Sept 2012) - Chimps may be similar to us in many ways but they can't compete when it comes to brain size. Now for the first time we can see when the differences emerge by tracking the brain development of unborn chimps.

As seen in this video, Tomoko Sakai and colleagues from Kyoto University in Japan subjected a pregnant chimp to a 3D ultrasound to gather images of the fetus between 14 and 34 weeks of development. The volume of its growing brain was then compared to that of an unborn human.

The team found that brain size increases in both chimps and humans until about 22 weeks, but after then only the growth of human brains continues to accelerate. This suggests that as the brain of modern humans rapidly evolved, differences between the two species emerged before birth as well as afterwards.

The researchers now plan to examine how different parts of the brain develop in the womb, particularly the forebrain, which is responsible for decision-making, self-awareness and creativity.

Wednesday, 19 September 2012

Caws and Effect (AMA)

"Reddit, what have I gotten myself into?"

Alex Taylor takes your questions on Reddit (AMA)


After the warm response yesterday that Redditors gave Alex Taylor and colleagues paper, "New Caledonian crows reason about hidden causal agents", the social media website have invited him to participate in an 'Ask Me Anything' (AMA).

Get your crow cognition questions ready for Alex Taylor as he takes on Reddit /science/ in an AMA (Ask Me Anything) - Sept, 19, 23:00 GMT

Link: Reddit.com/r/science




Tuesday, 18 September 2012

Crows can 'reason' about causes, a recent study finds


Curious crow is curious

(BBC Nature, 18, Sept, 2012) - Tool-making crows have the ability to "reason", say scientists.


In an experiment, researchers found that crows were more likely to forage when they could attribute changes in their environment to a human presence.

This behaviour may suggest "complex cognition", according to a study published in the Proceedings of the National Academy of Sciences.  Until now the ability to make inferences based on causes has been attributed to humans but not animals.

The study was a collaboration between researchers from the University of Auckland, New Zealand, the University of Cambridge, UK and the University of Vienna, Austria.

In their experiment eight wild crows used tools to remove food from a box.  Inside the enclosure there was a stick and the crows were tested in two separate series of events that both involved the stick moving.

In one instance a human entered the hide and the stick moved. In the other, the stick still moved but no human entered.  On the occasions when no human was observed entering the hide, the crows abandoned their efforts to probe for food using a tool more frequently than they did when a human had been observed.

According to the scientists, the study proved that crows attributed the stick's movement to human presence.

The results indicated that neither age nor sex was a predictor of the behaviour with juveniles, males and females displaying the same behaviour.  Scientists said that the kind of "reasoned inference" shown by the New Caledonian crows under these controlled conditions could also be utilised in the wild to anticipate danger or food.

The study is the first to suggest that animals have the ability to make reasoned inferences, although scientists added that the phenomenon could be more common among animals than previously thought.

Journal reference: New Caledonian crows reason about hidden causal agents - http://www.pnas.org/content/early/2012/09/10/1208724109

Monday, 17 September 2012

Crows can remember and differentiate human faces


"I know I know you"
 - The Crow (1994)

(New Scientist, Sept, 10, 2012) - You can run from a crow that you've wronged, but you can't hide. Wild crows remember human faces in the same way that mammals do.

Crows can distinguish human faces and remember how different people treated them, says John Marzluff of the University of Washington in Seattle.

To work out how the crows process this information, Marzluff had members of his team wear a latex mask as they captured 12 wild American crows (Corvus brachyrhynchos). The crows learned to associate the captor's mask with this traumatic experience. While in captivity, the crows were fed and looked after by people wearing a different mask.

After four weeks, the researchers imaged the birds' brains while they were looking at either the captor or feeder mask. The brain patterns looked similar to those seen in mammals: the feeder sparked activity in areas involved in motivation and reward, whereas the captor stimulated regions associated with fear.

The result makes sense, says Kevin McGowan of Cornell Lab of Ornithology in Ithaca, New York. Crows don't mind if humans are in their habitat – but they need to keep a close eye on what we do.

Journal reference: Proceedings of the National Academy of Sciences, DOI: 10.1073/pnas.1206109109

Size Does Matter. Brain Size!


Big brains, but all they
want to talk about is mackerel. 

(Discover Magazine, Sept, 11, 2012) - Every whale and dolphin evolved from a deer-like animal with slender, hoofed legs, which lived between 53 and 56 million years ago. 


Over time, these ancestral creatures became more streamlined, and their tails widened into flukes. They lost their hind limbs, and their front ones became paddles. And they became smarter.  Today, whales and dolphins – collectively known as cetaceans – are among the most intelligent of mammals, with smarts that rival our own primate relatives.

Now, Shixia Xu from Nanjing Normal University has found that a gene called ASPM seems to have played an important role in the evolution of cetacean brains. The gene shows clear signatures of adaptive change at two points in history, when the brains of some cetaceans ballooned in size. But ASPM has also been linked to the evolution of bigger brains in another branch of the mammal family tree – ours. It went through similar bursts of accelerated evolution in the great apes, and especially in our own ancestors after they split away from chimpanzees.

It seems that both primates and cetaceans—the intellectual heavyweights of the animal world—could owe our bulging brains to changes in the same gene. “It’s a significant result,” says Michael McGowen, who studies the genetic evolution of whales at Wayne State University. “The work on ASPM shows clear evidence of adaptive evolution, and adds to the growing evidence of convergence between primates and cetaceans from a molecular perspective.”

For decades, we’ve known that similarities between primate and cetacean intelligence run deep. For a start, both groups have members with unusually big brains. We humans have brains that are 7 times bigger than you’d expect for an animal of their size. The equivalent number is 2-3 for chimps and some monkeys, and 4-5 for some dolphins.

Over the last decade, scientists have identified seven genes that are linked to primate brain size. They’re called MCPH1 to MCPH7 (ASPM is the fifth in the line). Faults in these genes can lead to microcephaly – a developmental disorder characterised by a debilitatingly small brain.

McGowen had already shown that, unlike in humans, MCPH1 doesn’t neatly correlate with brain size in cetaceans. Xu wanted to see if ASPM would be more interesting. He sequenced the gene in fourteen species of cetaceans, from the bottlenose dolphin to the minke whale. He then compared these to known sequences from 18 other mammals, including several primates and the hippopotamus (the closest living relative to cetaceans).

Xu found that ASPM went through two periods of strong positive selection – where beneficial new versions of the gene spread through a population. The first coincides with the point when toothed whales (like sperm whale and dolphins) split away from the baleen whales (like blue, fin and humpback whales). Their brains got bigger. The second period marks the split of the toothed whales into the delphinoids (including all oceanic dolphins and porpoises) and all the others. The delphinoids’ already big brains got bigger still.

Xu also found signatures of positive selection within the ASPM genes of primates, but not in any other mammal groups. During their history, both groups must have experienced some evolutionary pressures that meant bigger brains suddenly became advantageous. We can only speculate what these might have been. For cetaceans, the toothed whales evolved to navigate with echolocation, and may have needed a larger brain to process the information from all the returning echoes. The delphinoids may owe their larger brains to the mental demands of living in large, complex social groups. (Both hypotheses have been on the cards for some time, and Xu’s ASPM discovery doesn’t provide a smoking gun for either.)

What does ASPM actually do? The gene is activated in neuroblasts, the embryonic cells that eventually divide into neurons. It helps to create structures in dividing cells that send a full complement of DNA into each daughter. If ASPM isn’t working properly, the neuroblasts cannot divide evenly, and brains get smaller. It’s not clear how the reverse happens – how changes in ASPM lead to bigger brains, but it’s now clear that this has happened in at least two mammal groups.

Xu found certain mutations that were associated with the bigger brains of toothed whales, and others that are associated with the even bigger brains of delphinoids. What these mutations did is anyone’s guess, and something that will take a lot of experimental work to uncover.

Here’s one critical nugget, though: they’re different to the changes you see in primates. The same gene may have enlarged the brains of both groups, but it did so in different ways. And undoubtedly, other genes were also involved.

(To close, here’s possibly my favourite ever example of convergent evolution, which also involves cetaceans. Toothed whales and some bats both use echolocation, and their abilities depend on the same changes to the same gene – Prestin. This was discovered at the same time by two independent groups of researchers, one led by Yang Liu and the other by Ying Li!)

Reference: Xu, Chen, Cheng, Yang, Zhou, Xu, Zhou & Yang. 2012. Positive selection at ASPM gene coincides with brain size enlargements in cetaceans. Proc Roy Soc B.

Thursday, 22 September 2011

Unlike Humans, Chimpanzees Don’t Enjoy Collaborating

Wired Science (Sept. 22, 2011) - When it benefits them, chimpanzees willingly work together. Otherwise, they can’t be bothered.

For humans, collaboration is rewarding for its own sake, a behavioral split that may underlie key differences between human and chimpanzee societies.

Primate researchers, working with semi-free ranging chimpanzees at a sanctuary in Uganda, found chimpanzees recruit a helping partner only if it gets them more food than they’d get alone. The study, described in Animal Behavior, Sept. 7, is part of a current trend in primatology to unpick how motivation and mental state affects an animal’s interactions.

“It looks like motivation plays a very important role in how we behave,” said Anke Bullinger, primary author. “And it gives a hint that even though species might be cognitively capable of doing certain things, they might not show the behavior, because they just don’t want to.”

The extent of human cooperation is unique, but not cooperation itself. Chimpanzees, bonobos, elephants and many birds work together for joint rewards.

“The interesting thing is that there isn’t much research on the motivational aspects of this,” Bullinger said. “I suspect that motivation plays a role in many aspects of cognition, not just in cooperative behavior, but also in social learning, in communication.”

For the study, Bullinger and her colleagues set food boards out of the chimpanzee’s direct reach. To bring the banana bearing platforms close, the chimps pulled on a rope resting on the ground. Chimpanzees had two options. One board they could pull close solo. On another board, loose rope threaded between loops. To get these boards, both ends had to be pulled, so the chimpanzee had to go get their partner, waiting in an adjoining room.

When Bullinger placed two banana pieces on the single board, and four pieces on the partner board, amounting to the same payoff for each chimpanzee, the animals chose to work alone the vast majority of the time. If another banana piece for each was added to the partner board, the chimpanzees overwhelmingly choose to collaborate.

“We were a bit surprised that just one more piece made such a difference,” Bullinger said.

The study implies that chimpanzees view others as social tools, as a means of maximizing their own rewards.

Continue reading: "Unlike Humans, Chimpanzees Don’t Enjoy Collaborating"

Tuesday, 20 September 2011

Crows Use Mirrors To Find Food

BBC Nature (Sept. 20, 2011) Clever New Caledonian crows can use mirrors to find food, according to scientists.

Researchers from the University of Auckland, New Zealand, tested wild-caught crows' reactions to mirrors.

The crows did not recognise themselves but found cached food items by studying their reflections.  The results put the birds in an elite group of species - which includes primates and elephants - known to be able to process mirror information.

New Caledonian crows (Corvus moneduloides) are known for their intelligent and innovative use of tools, such as twigs, which they use to fish nutritious insects out of holes and crevices.

Mirror experiments with other members of the same family of birds, the corvids, have found that magpies recognise their reflections but jungle crows do not.

In this study, published in the journal Animal Behaviour, psychologists examined the recognition skills of the notoriously clever New Caledonian crows.

Scientists captured 10 wild birds and placed them in large cages in order to record their behaviour in response to mirrors.

All the crows reacted to seeing their reflections as if they were encountering another crow; the birds made rapid head movements, raised their tails and even attacked the reflection.

Lead researcher Felipe S Medina Rodriguez said the crows' antagonistic reaction to their mirror image "was not surprising". He explained that an animal usually had extensive exposure to mirrors before it began to display an understanding that the image it was seeing was itself.

When the crows moved away from the mirror and lost sight of their reflection, they frequently searched behind the mirror to locate the "other" bird.

The researchers think that the behaviour was probably caused by the birds' lack of experience of mirrors; similar reactions have been recorded in primate infants and two-year-old children.

The second part of the experiment, though, revealed some surprising findings.

The scientists devised a task to test whether the crows could use mirrors to locate cubes of meat that were hidden from direct view.

All of the crows tested appeared to understand how the meat's reflection correlated to its location.

Friday, 23 July 2010

The Private Life of... PIGS

AIRED: Thursday, 22 July, 20:00 on BBC Two

The Private Life of... turns its attention this week towards the mental lives of pigs.  Presented by Jimmy Doherty the series sets out to reveal the hidden lives of farmyard animals using a variety of simple psychometric testing measures.  Set on a farm in Dartmoor, Jimmy embarks on a quest to uncover the answers to questions such as, how sensitive is a pigs nose? Why can they find truffles underground? How do piglets find the right teat to feed from? (and by far the most interesting question of the episode), Can pigs recognise themselves in a mirror?

Traditionally the mirror test is a measure of self-awareness developed by Gordon Gallup Jr. (1970).  Inspired by the written accounts of Charles Darwin (1809-1882) and his reports on holding a mirror up to an orangutan and recording the corresponding facial and bodily actions.  Darwin suggested that these expressions were ambiguous and either signified that the primate was making expressions at what it perceived to the another animal, or it could be playing a sort of game with a new toy -  the animal might not be recognising itself but instead be attributing that image to another or, alternatively it might be recognising that the object that it holds represents an image of itself and so demonstrate an understanding of self-awareness.

It was through these observations that Gallup devised a test that attempted to gauge self-awareness by trying to discover whether an animal could recognise its own reflection in a mirror mark test.  Also referred to as the rouge test, the experiment is conducted covertly placing a mark of the participants body.  Ideally the spot should be placed in an area that is clearly visible to the animal in the mirror and can be physically reached with an appendage (reaching in this manner might suggest the identification of the foreign agent).  The control measure would therefore be a mark to an accessible part of the body but still remains out-of-sight.  Researchers then observe behaviours that might show the recognition of the placed mark.

To date animals that have passed the mirror test include all of the great apes, bottle-nosed dolphins, orcas, elephants and European magpies, with human children failing this test until they reach 18 months old.  Not surprisingly, pigs have previously been found to pass a variation of the mirror mark test, using the mirrors image to obtain information about a food source (Broom, Sena and Moynihan, 2009).  Under the watchful eye of Broom, it was precisely this measure of mirror self recognition that the programme used during the procedure.

Whilst the total amount of piglets used during testing was relatively low (expectantly due to the time constraints of the programme), the piglets did show a marked preference towards the location of the food when the mirror was present, suggesting that each piglet used the information from the mirror and its surroundings, deduced the relationship between the two and acted accordingly in finding the food source.  This therefore might suggest a form of assessment awareness in pigs.  Whilst the results were by no means conclusive, with a friend commenting on the suitability of the mirror mark test on an animal that has no flexible appendages and whether or not the piglet recognised itself in relation to the food (or just simple recognised the food), it does highlight the need for further research into the areas of animal cognition and self recognition.  I therefore suggest that what is needed are better designed measures of self-awareness and the acknowledgement of these mental lives in order to help in the welfare of all animal species.

Link: The Private Life of...Pigs



ShareThis